Which lessons can we learn from the studies on the ground – experiences in 9 EU countries

4th QUALICHeCK conference 21 Feb 2017 Brussels

Jarek Kurnitski, Tallinn University of Technology

QUALICHeCK approach
Status on the ground

• Existing data analyses report based on 31 previous studies:
 • Measured performance
 • Reliability of input data
 • Quality of the works
 • Compliance frameworks
• 10 new data collection studies from 9 focus countries
QUALICHeCK approach
Status on the ground

• Technology areas covered:
 • Transmission characteristics and air tightness
 • Ventilation systems
 • Summer thermal comfort solutions
 • Renewable systems (heat pumps, thermal solar, PV)

New data collection studies on

• EP compliance and EPC input data quality (5 studies)
 • Site visits
 • Check of design documentation
 • New EPC calculation

• Summer thermal comfort compliance (1 study)
 • Measurements, design documentation, temperature simulations

• Reliability of EPC issued with different methods (1 study)

• Transmission characteristics related studies (3 studies)
 • Cavity insulation: quality framework for cavity wall insulation
 • Windows: input data on window thermal performance
 • U-values compliance

⇒ Reports available in February 2017, see factsheets:
 http://qualicheck-platform.eu/
Some findings: Compliance frameworks

- Compliance frameworks may stop at scheme design/building permit; final design, construction and as-built energy performance of buildings is not under control, i.e. the compliance is controlled until issuing the building permit.

- Many countries have no control mechanism for:
 - Final design/production information
 - Design changes during construction
 - Commissioning
 - As built energy performance not known

4 out of 9 countries have compliance frameworks extended to final design and construction and commissioning phases

<table>
<thead>
<tr>
<th>Assessment type</th>
<th>Calculated (asset)</th>
<th>Measured (operational)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sub-type</td>
<td>Design</td>
<td>As-built</td>
</tr>
<tr>
<td>Typical time</td>
<td>Building permit</td>
<td>After completion</td>
</tr>
<tr>
<td>frame</td>
<td></td>
<td>of the works</td>
</tr>
<tr>
<td>Used for EPC</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Country</td>
<td>AT</td>
<td>BE</td>
</tr>
<tr>
<td></td>
<td>•</td>
<td>•</td>
</tr>
</tbody>
</table>

† Not based on EPC method
Control of performances!

Accredited organisation(s)
Random checks

Certified building contractor

Building airtightness

French approach in framework of new regulations introduced in 2012

OPTION 1: Certified tester
Control of the end result!

OPTION 2: Building firm with integral quality approach
Control of competence/organisation (and end result)!
Most of ventilation studies report poor performance

- In France 47% of inspected dwellings (604 dwellings out of 1.287) did not comply with the ventilation regulation (right)
- Airflow rates below the design value in nearly two thirds of Estonian new apartments (below)

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>33 (82.5%)</td>
<td>Ductwork incorrectly fitted (kinked / bent / poor joints / excessive length)</td>
</tr>
<tr>
<td>10 (25%)</td>
<td>Undersized fans to meet the minimum ventilation requirement</td>
</tr>
<tr>
<td>6 (15%)</td>
<td>Insufficient fans or terminal outlets for dwelling type</td>
</tr>
<tr>
<td>3</td>
<td>No boost function</td>
</tr>
<tr>
<td>3</td>
<td>Incorrect installation data</td>
</tr>
<tr>
<td>2</td>
<td>Missing ductwork</td>
</tr>
<tr>
<td>1</td>
<td>Blocked ductwork</td>
</tr>
</tbody>
</table>

Mostly positive studies about renewable systems

- In France 93% of the audited solar thermal installations had an excellent (70%) or good quality (23%) performance (example: detailed analysis of the quality in the studied audits)
- In Germany ground source heat pumps reached an average seasonal performance factor (SPF) of 3.9, air to water heat pumps 2.9 and water to water 3.7

- Wood boilers
- PV
Austria: assessment of EPC based on recalculation and on-site validation

• Compliance of 26 multi-family buildings in the Salzburg region constructed between 2009 and 2014 that applied for energy-efficiency subsidies was analyzed

• Subsidy system required an updated compliant EPC upon completion of the building

• The study recalculated EPCs based on original building documents such as site foreman’s plan and, by comparing original EPCs and recalculated EPCs, investigated reasons for errors in determining input data

Austria: assessment of EPC based on recalculation and on-site validation

• EPC input data not updated in 5 buildings out of 26 (20%) resulting in errors on space heating demand in the range of 5-28%

• The deviation between the planning and the original completion EPCs was less than 5% for 17 out of the remaining 21 buildings, mainly due to design changes

• Recalculated EPCs deviated from the completion EPCs between -29% and 38%, large deviations because of interpretation of rules and compliant multiple data input options
Sweden: Compliance of Energy Performance Certificates

• EPC in Sweden is based on measured energy use (to be issued within 2 year after taken in use)

• The measured energy use is corrected for the reference year, and should also be corrected for the normal use, but as no standard methodology is available this is seldom done

• Differences between Measured and Calculated Energy Use in EPCs versus Building Permits have been analyzed

Sweden: Compliance of Energy Performance Certificates

• 313 newly built houses were studied. Of these 100 houses had been taken in use two years prior to this study.

• We found 44 EPCs which means 44% of the buildings complied with the requirements of the EPBD.

• There are no court cases of home owners lacking a EPC and Boverket does not proceed with legal actions (applies for houses not sold or rented)

• The study revealed that the energy use in a single-family house can vary with more than 30% due to occupants' behaviour
Sweden: calculated vs measured energy use

- Smaller difference than ± 10% is considered acceptable according to Sveby.
- 29 houses out of 44 (66%) had a larger difference than 10%.
- The average difference was 25%, max difference has 113% larger measured energy use than calculated.
- Calculations are performed at an early stage and may not have been updated with the latest drawings and information.
- It was shown that the difference was larger for houses heated by exhaust air heat pump than for houses heated by ground source heat pump.

Estonia: summer thermal comfort

EPBD Annex I requirement:
“1. The energy performance of a building shall be determined ... and shall reflect the ... cooling energy needs (energy needed to avoid overheating) to maintain the envisaged temperature conditions ...”

Estonian legislation:
Addressed by a requirement not allowing to exceed +27°C more than 150Kh in residential buildings and +25°C more than 100Kh in non-residential buildings from June 1 till Aug 31
Solutions to prevent overheating

- Overhangs with $A/H>0.7$ in south orientation
- Side-fins with $B/C>0.7$ in west orientation
- North and east oriented rooms did not experience values over the threshold

Example from ESTONIA:
Assessment of overheating

Overall building results:
17 out of 25 (68%) did not comply with the regulation

Requirement ≤ 150 Kh
Belgium: window U-values

Specified windows were compared to installed ones:

- EPB-files, EPB-declarations, architectural drawings and window component product data (glazing and framing) were collected for 32 randomly selected projects assessed by 15 different EPB-assessors: 1 office building, 22 single-family houses and 9 apartments (311 windows in total)
- For each of the 32 projects, the EPB-files were screened and the U-value of all the windows was recalculated
- The recalculated values were compared to the input data in the EPB-declarations

Belgium: window U-values

- In 4 of the 32 EPB-declarations (12.5%), the window input data were not correctly reported compared to the information given in architectural drawings and manufacturer data
- Wrong values of window areas were used in 3 of these 4 cases, while in one case wrong U-values of the window frame were used, leading to a maximum deviation of 24% of the mean window U-value
- The method of calculation did not have an influence on the prevalence of reporting errors
Romania: EPC quality

- Analysis of quality and compliance by in-situ verification and EP recalculation for 26 residential buildings certified 2015

EPC quality problems:
- several cases of incomplete EPC data (e.g. building address without postal code, lacking of incorrect total unfolded built area or year of construction)
- incorrect calculations according to the EPB Methodology (e.g. calculation of penalties and energy rate/mark)
- deviations in the assumptions and calculation of input data (net floor area, internal (heated) volume of the building, U-values etc., heat transfer area of building envelope etc.) and in calculated energy performance indicators
- also the differences caused by software tools used, but as far there is no clear validation procedure one could not say that all deviations found are non-compliance issues

Romania: EPCs with more than one energy class deviation

- the main causes due to not correct input data and filling in the EPC
- 50% of the buildings had more than one class higher energy use for space heating
- 39% of the buildings had at least one class higher total energy use
Conclusions: **Measured performance**

- Poor ventilation could be seen as a major European problem: ventilation rates and noise typically did not comply
- Ductwork air tightness an issue in Central Europe, not any more in North Europe
- Building leakage showed both good and bad examples
- Limited data on transmission characteristics (mostly inconclusive, additional studies needed)
- Heat pumps, solar thermal and other renewables showed good performance if certified installers etc. schemes applied
- Limited data on summer thermal comfort – addressed only in a half of studied building codes

Conclusions

- In many countries development with 5 year step can be seen – new requirements and procedures 2007, 2012 etc. launched
- Systemic changes evidently will need time, legislative changes are to be supported with relevant compliance procedures, supervision, commissioning, performance measurements, piloting, model solutions, guidelines, training ...
- More ambitious and sophisticated systems (Austria, Estonia, Sweden,) more difficult to implement in practice – longer learning curves
- Compliance frameworks are to be extended in many countries in order to be able to assess as built performance – in about half of studied countries control mechanisms stopped to building permit phase – issue EPC for completed building (permit of use)