Delivering high performance residential pitched roofs in the real world

Qualicheck Conference
December 2016
Ross Holleron & Jelle Langmans
Overview

Background to the issues

Key influences on real performance

Best practice guidance

Research led by KU Leuven

– Jelle Langmans
– Staf Roels
Government & industry drive for thermal performance
Delivery in the real world proving to be challenging
Example
Issues from UK industry study

CONCEPT DESIGN & PLANNING
- Limited understanding of impact of early design decisions on energy performance

DETAILED DESIGN
- D1: Inadequate understanding and knowledge within detailed design team
- D2: Lack of integrated design between fabric, services & renewables
- EMB: Issues around use of U-value and thermal bridging calculation procedures
- EM7: Concern over competency of SAP assessors

PROCUREMENT
- PR2: Inadequate consideration of skills and competency at labour procurement

CONSTRUCTION & COMMISSIONING
- C5: Product substitution on site without consideration of energy performance
- C15: Poor installation of fabric
- C9: Poor installation or commissioning of services
- CT3: Lack of site team energy performance knowledge & skills
- C6: Lack of adequate energy performance related QA on site

VERIFICATION & TESTING
- T3: Concern over consistency of some test methodologies & interpretation of data
- EM4: As-Built SAP not reflective of actual build
- V2: Lack of robust energy performance related verification, reliance on third party information
- V5: Lack of clarity over documentary evidence for Part L & Part F compliance
Focus on Warm Roof Construction

Up to 90% increase in measured U-value
Wind speeds up to 7.5 ms\(^{-1}\)

BUT – construction type counter to what researchers already know......
Working with Academia to define and trial best practice
How to construct a domestic pitched roof with high thermal quality?

Staf Roels and Jelle Langmans

Building Physics Section
Department of Civil Engineering, KU Leuven
Kasteelpark Arenberg 40 – box 2447
BE-3001 Heverlee, Belgium
www.kuleuven.be/bwf

QUALICHeCK, Brussels, December 2016
Overview of international research on air flows within pitched roof elements

Practical guidelines for good practice
Typical air flow patterns

FORCED EXFILTRATION
(driven by air pressure differentials)
1) Exfiltration: air barrier

<table>
<thead>
<tr>
<th>Air barrier material</th>
<th>Di Lenardo et al. (1995)</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 0.0096 m³/m²/h/Pa</td>
<td></td>
</tr>
<tr>
<td>< 0.0018 m³/m²/h/Pa</td>
<td>Langmans et al. (2010)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Air barrier system</th>
<th>Straube (2011)</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 0.0047 m³/m²/h/Pa</td>
<td></td>
</tr>
<tr>
<td>< 0.0096 m³/m²/h/Pa</td>
<td>Di Lenardo et al. (1995)</td>
</tr>
</tbody>
</table>
2) Air rotations: insulation density & installation quality
2) Air rotations: insulation density & installation quality

2) Air rotations: insulation density & installation quality

advertisement: perfect

practise: difficult corners, joints
2) Air rotations: insulation density & installation quality

Quality control impossible?

<table>
<thead>
<tr>
<th>Density</th>
<th>Application</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>>13 kg/m³</td>
<td>Filled insulation compartment</td>
<td>Brown et al. (1993)</td>
</tr>
<tr>
<td>>21 kg/m³</td>
<td>Avoid small air channels</td>
<td>Powell et al. (1989)</td>
</tr>
<tr>
<td>20-30 kg/m³</td>
<td></td>
<td>Langmans et al. (2013)</td>
</tr>
</tbody>
</table>
2) Wind washing: wind barrier

![Image of wind washing with marked edge joint]

- Edge joint not sealed
- Sealed edge joint
2) Wind washing: wind barrier

[Image of a wind barrier setup with labeled equipment: Testkast, Meetmonster, Debietmeter, Drukmeter]
Practical guidelines
2) Wind washing: wind barrier

- Foil overlap/ tongue-groove joints mostly ok
- Sealing

<table>
<thead>
<tr>
<th>Air permeability</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$<0.05 \text{ m}^3/\text{m}^2/\text{h}/\text{Pa}$</td>
<td>Uvsløkk (1996)</td>
</tr>
<tr>
<td>$<0.036-0.09 \text{ m}^3/\text{m}^2/\text{h}/\text{Pa}$</td>
<td>Ojanen & Kohonen (1995)</td>
</tr>
</tbody>
</table>
2) Wind washing: wind barrier

Quality control planned in building phase

<table>
<thead>
<tr>
<th>Air permeability</th>
<th>Uvsløkk (1996)</th>
</tr>
</thead>
<tbody>
<tr>
<td><0.05 m³/m²/h/Pa</td>
<td>Ojanen & Kohonen (1995)</td>
</tr>
<tr>
<td><0.036-0.09 m³/m²/h/Pa</td>
<td></td>
</tr>
</tbody>
</table>
Conclusions: pitched roof is possible if...

<table>
<thead>
<tr>
<th>Air barrier system</th>
<th>Air barrier system</th>
</tr>
</thead>
<tbody>
<tr>
<td><0.0047 m³/m²/h/Pa</td>
<td><0.05 m³/m²/h/Pa</td>
</tr>
</tbody>
</table>

Air barrier system

<table>
<thead>
<tr>
<th>Density</th>
<th>Insulation layer</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-30 kg/m³</td>
<td>Filled insulation compartment</td>
<td>Avoid small air channels</td>
</tr>
</tbody>
</table>

Wind barrier

Air permeability

<0.05 m³/m²/h/Pa
An example from the real world
Social Housing Retrofit – Eeklo Belgium

- Working closely with stock owners
- Increasing installer knowledge
- Jointly developing sequences
- Identifying key QA stages
- Monitoring performance

1 – Plan ahead
2 – Explain the point
3 – Make ‘good’ visual
In summary

Real world requires a **system** approach
Supported by appropriate **quality checks**

Key performance criteria

Air barrier as a system
- <0.0047 m³/m²/h/Pa

Insulation material and installation
- When possible completely fill compartment
- Specific air permeability limit (7-8 x 10⁻⁹ m²)
- Avoid gaps between structure

Wind barrier
- <0.05 m³/m²/h/Pa
Thank you

Jelle Langmans - KU Leuven
jelle.langmans@bwk.kuleuven.be

Ross Holleron - Knauf Insulation
Ross.holleron@knaufinsulation.com
The sole responsibility for the content of this presentation lies with the authors. It does not necessarily reflect the opinion of the European Union. Neither the EASME nor the European Commission are responsible for any use that may be made of the information contained therein.