Laboratory investigation on the durability of taped joints in exterior air barrier applications

Jelle Langmans, Tadiwos Desta, Lieven Alderweireldt, Staf Roels

Building Physics Section
Department of Civil Engineering, KU Leuven
Kasteelpark Arenberg 40 – box 2447
BE-3001 Heverlee, Belgium
www.kuleuven.be/bwf

Redco nv
Kuiermansstraat 1
Kapelle Op Den Bos, 1880 Belgium
Complex details of interior air barriers
• Traditional wood-frame construction: interior air barrier
 • Disadvantages:
 • Many joints make it labour intensive to seal
 • Risk of later penetration of the air barrier
 • Labour intensive
Introduction

• Traditional wood-frame construction: interior air barrier
 • Disadvantages:
 • Many joints make it labour intensive to seal
 • Risk of later penetration of the air barrier
 • Labour intensive
Exterior air barriers: potential to reduce labour costs
Introduction

<table>
<thead>
<tr>
<th>$n_{50} \ (1/h)$</th>
<th>Wind barrier</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.8</td>
<td>Foil</td>
</tr>
<tr>
<td>2</td>
<td>Bituminous wood fiber board</td>
</tr>
<tr>
<td>0.28</td>
<td>Gypsum board + foil</td>
</tr>
<tr>
<td>0.56</td>
<td>Gypsum board + foil</td>
</tr>
<tr>
<td>0.29</td>
<td>Gypsum board + foil</td>
</tr>
<tr>
<td>0.52</td>
<td>Bituminous wood fiber board</td>
</tr>
<tr>
<td>0.61</td>
<td>Bituminous wood fiber board + foil</td>
</tr>
</tbody>
</table>
But… exterior air barriers are exposed to more severe conditions!
Artificial aging

Air permeability testing
Introduction

Method

Test-setup

Results

Conclusions

TEST SAMPLES

<table>
<thead>
<tr>
<th>TEST SERIES</th>
<th>TAPE</th>
<th>Spacer</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Tape A</td>
<td>Aluminium</td>
</tr>
<tr>
<td>B</td>
<td>Tape B</td>
<td>Aluminium</td>
</tr>
<tr>
<td>C</td>
<td>Tape A</td>
<td>Wood</td>
</tr>
<tr>
<td>D</td>
<td>Tape B</td>
<td>Wood</td>
</tr>
</tbody>
</table>

Diagram

- **Test-series diagram**
 - 2 mm joint (taped)
 - 70.7 cm / 35 cm
 - Metal/wooden spacer

Notes

- **Test samples**
 - **Air permeability testing**
 - **Test series TAPE**
 - **A**
 - Tape A
 - Aluminium
 - **B**
 - Tape B
 - Aluminium
 - **C**
 - Tape A
 - Wood
 - **D**
 - Tape B
 - Wood
AIR PERMEABILITY TEST

27 x 27 cm²

70 x 70 cm²

\[K_{\text{joint}} = \frac{(K_{\text{spec}} - K_{\text{mat}}) \cdot A_{\text{spec}}}{l_{\text{joint}}} \]
ARTIFICIAL AGING

<table>
<thead>
<tr>
<th>Test</th>
<th>Type</th>
<th>Total time</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Temperature</td>
<td>2 weeks</td>
<td>6 x (24h 70°C and 24h 15°C @30% RH)</td>
</tr>
<tr>
<td>2</td>
<td>Temperature, rain, frost</td>
<td>12 days</td>
<td>40 x (3h 70°C - 1h rain - 2h repose) - 2 x (8h 50°C - 16h -20°C)</td>
</tr>
<tr>
<td>3</td>
<td>UV-exposure, vapour</td>
<td>4 weeks</td>
<td>56 x (8h UV (40°C) and 4h vapour exposure (60°C))</td>
</tr>
</tbody>
</table>
BEFORE ARTIFICIAL AGING

- TAPE A: $3.1 \times 10^{-6} \text{ m}^3/\text{m/h/Pa}$
- TAPE B: $3.9 \times 10^{-7} \text{ m}^3/\text{m/h/Pa}$

EXTREMELY LOW VALUES
Results

TEST 1

Aluminium spacer

TEST 2

TEST 3

Wooden spacer
Results

- Aluminium spacer
- Wooden spacer

<table>
<thead>
<tr>
<th>TEST 1</th>
<th>TEST 2</th>
<th>TEST 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAPE A</td>
<td>TAPE B</td>
<td>TAPE A</td>
</tr>
<tr>
<td>TAPE B</td>
<td>TAPE B</td>
<td>TAPE B</td>
</tr>
</tbody>
</table>

Air permeability (m3/m2/h/Pa)
BEFORE ARTIFICIAL AGING

• TAPE A: $3.1 \times 10^{-6} \text{ m}^3/\text{m/h/Pa}$
• TAPE B: $3.9 \times 10^{-7} \text{ m}^3/\text{m/h/Pa}$

EXTREMELY LOW VALUES
Results

Aluminium spacer

Wooden spacer

TEST 1

TEST 2

TEST 3

Air permeability (m³/m²/h/Pa)
Results

Aluminium spacer

<table>
<thead>
<tr>
<th>Test</th>
<th>Tape A</th>
<th>Tape B</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEST 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TEST 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TEST 3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Wooden spacer

<table>
<thead>
<tr>
<th>Test</th>
<th>Tape A</th>
<th>Tape B</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEST 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TEST 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TEST 3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Conclusions

- Methodology to test the durability of taping products was proposed
 - Temperature cycles
 - Frost-thaw cycles
 - UV cycles
• Methodology to test the durability of taping products was proposed
 • Temperature cycles
 • Frost-thaw cycles
 • UV cycles

• Two tapes have been tested: \textit{impact} < 4-6 \times 10^{-5} \text{ m}^3/\text{m/h/Pa}
Methodology to test the durability of taping products was proposed:
- Temperature cycles
- Frost-thaw cycles
- UV cycles

Two tapes have been tested: \(\text{impact} < 4 \times 10^{-5} \text{ m}^3/\text{m/h/Pa} \)

\(n_{50} = 0.003 \text{ 1/h} \ll 0.6 \text{ 1/h (Passive house)} \)
Limitations of current study
 • Two taping products with high quality
 • Application of the tape in laboratory conditions

Further research
 • More products available in the market
 • Application of the tapes in worse conditions (freezing, dusty, …)