Key features for successful frameworks for effective compliance

4th September 2015

Susanne Geissler
ÖGNB – Österreichische Gesellschaft für Nachhaltiges Bauen
geissler@oegnb.net

IEE/13/610/SIO2.675574
01/03/2014-28/02/2017
Overall context regarding “compliance”

EPBD related administrations

• ... impose cost-optimal and NZEB requirements
• ... hope that there is a “good quality of the works”

Incentive schemes, private builders, ...

• ... impose energy related requirements
• ... impose/expect a “good quality of the works”
EPC compliance and QUALICHeCK

QUALICHeCK aims at answering the following question:

• How to make sure that **minimum energy performance requirements** for new buildings and major renovations **are actually met** when calculating the EPC according to EPBD 2010/31/EU?

• **Compliance is demonstrated by** fulfilling defined minimum requirements at different levels, e.g. maximum allowed specific heat transmission losses, maximum U-values of the envelope elements, maximum annual heat demand for space heating and for cooling, maximum primary energy for operation of building systems (HVAC and lighting), with an EPC determined according to the existing rules.
Three aspects of non-compliance

• No documentation / no reporting: required evidence (documents, ...) is not provided.
 • In case of EPC: EPC is not available.

• Wrong declaration / wrong reporting: there can be substantial differences between the declared performances and the performances on the ground.
 • In case of EPC: The information in the EPC is not correct.

• Not meeting the performance requirements: there can be a clear evidence that the required performances are not achieved.
 • In case of EPC: The EPC shows that the legal requirements in terms of energy performance are not met.

In all cases it is important to have a sanctioning framework in place in order to drive the market towards good energy efficiency performances.
Why do we need a consistent EPC framework?

• EPC is a key policy instrument to achieve the transition towards more energy efficient buildings and nearly zero energy buildings

• EPCs display the energy performance of a building to take it into account in decision-making whether to rent or buy a building or a building unit

• Lessons learnt: The EPC must be trusted to be effective

• We want:
 • EPCs calculated according the legal procedures
 • Good quality of the works (“to get in reality what is promised on paper”)

• At the moment there is still some room for improvement: How to guarantee such achievements in a pragmatic and cost-effective way?
Sources of mistakes resulting in wrong EPCs

Lack of quality of input data: default values, database,...; EPC could be C or B

Deviation from plan (design changes): Different products with worse energy efficiency performance than planned

Lack of quality of the works: Mistakes during construction such as leakages, wrong installations, etc.; EPC could even miss minimum requirements

Building design/ EPC calculation
Material/component procurement
Building construction

More information on quality of the works: presentation by Hans Erhorn
More information on quality of input data: presentation by François Durier

New buildings and major renovations
Elements of effective compliance frameworks

A three-step approach has been identified how to achieve good compliance:

• There should be clear procedures what must be done in order to determine EPC input data
• There should be clear legal procedures how to decide on non-compliance and related actions
• There should be effective control and sanctioning mechanisms to be applied in cases of non-compliance

In order to achieve good compliance, societal support is important, meaning that stakeholders understand and accept the need for energy efficiency requirements, the need for compliance and enforcement.
Two QUALICHeCK source books respond to this challenge...

PART 1
- Efficiency of a heat exchanger
- Airtightness of a building
- Procedures to obtain and prove compliant data
- There should be clear technical procedures what must be done

PART 2
- Robust documented procedures for handling non-compliance
- There should be clear legal procedures how to decide on non-compliance and related actions

PART 3
- Handling of non-compliance in practice
- There should be an effective control and sanctions if non-compliance

... PRODUCTS
- Voluntary quality frameworks
- Mandatory quality frameworks

... THE WORKS
- Possibility to have efficient maintenance
- Technical procedures to obtain / prove quality of the works
- Control of compliance by public administration
- Third party control of compliance
Elements of a compliance framework - examples

<table>
<thead>
<tr>
<th>Potential quality / compliance problem</th>
<th>How to ensure quality / compliance</th>
<th>How to check compliance</th>
<th>Sanction in case of non-compliance</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPC does not correspond with energy performance of actual building (as-built)</td>
<td>Quality of input data in the design phase and in the completion phase: reduce the range of interpretation in documents, provide third party controlled data, ...</td>
<td>Random check of EPC by public authority regarding correctness of entire EPC (e.g. recalculation based on data from measurements)</td>
<td>EPC expert (in case of faulty EPC): Warning - training course - fine - withdrawal of licence</td>
</tr>
<tr>
<td>Products / components built in the wrong way</td>
<td>Qualified workforce (certified / trained workers) for construction</td>
<td>Measuring/testing quality by third party control scheme (e.g. competent tester schemes): () airtightness () U-values of built-in windows (*) and use data for updating EPC</td>
<td>Building owner: EPC is rejected and must be submitted again No energy-related financial support / finance</td>
</tr>
</tbody>
</table>

(*) airtightness
(*) U-values of built-in windows
(*) and use data for updating EPC

Products / components built in the wrong way

Qualified workforce (certified / trained workers) for construction
Qualified testers (competent / certified testers) for measuring as-built situation

Building owner:
EPC is rejected and must be submitted again
No energy-related financial support / finance
There is not always the need for a compliance framework - focus on crucial aspects

- Example: thermal bridges
 - **Aspect 1: condensation and mould growth**
 - Awareness raising is crucial
 - Competence is required
 - Liabilities can be such that one will take care of it without third party control
 - **Aspect 2: energy losses**
 - Awareness raising is crucial
 - Competence is required
 - In practice not evident to assume that one handle thermal bridges correctly without third party control

- It is more a continuum from almost no need for attention to quality till a very strict compliance framework → **pragmatic, cost-effective and appropriate approaches**
Effective compliance frameworks focus on crucial aspects

EPBD related administrations

- Cost-optimal and nZEB requirements

TRAINING:
- Need for more and/or improved training?
 - No
 - Upgrading existing training

COMPETENCE:
- Need for checking competence of workers?
 - No
 - Examinations Certified Workers

BUILDINGS:
- Need for checking quality of the works?
 - No
 - Inspection of works Reports for each building

- High probability of good workmanship
Thank you for your attention!

The sole responsibility for the content of this presentation lies with the authors. It does not necessarily reflect the opinion of the European Union. Neither the EASME nor the European Commission are responsible for any use that may be made of the information contained therein.