Measured versus calculated energy use in Sweden

Pär Johansson, Paula Wahlgren, Jan-Olof Dalenbäck

Department of Civil and Environmental Engineering
Chalmers University of Technology
Gothenburg, Sweden
September 4, 2015
Main conclusions

Measured EP in Sweden, normalized with respect to climate and behavior

• Energy use by *occupant’s behavior* explain a large part of the difference between calculated and measured energy use
• *Normal use* is not standardized and therefore not accounted for in the EPC
• Few buildings have energy meters that *separate energy use* for heating from energy use which should not be included in the EPC
• Bad compliance of the number of EPCs reported for new buildings is caused by *lack of follow-up actions*. There are no court cases of home owners lacking an EPC

To improve the EPC scheme, and quality of energy use calculation, further work is needed in the area of *standardizing input data, calculation procedures* and *reporting*
Background and introduction

• Performance based energy use demands in the building code 2006
 — Calculated, sent to municipality with the building permit application

• Energy Performance Certificates (EPC) introduced in 2006
 — Measured energy use (12 m within 24 m after commissioning)
 — Corrected to *normal use* during a *reference year*

• Correction to reference year by using the energy index
• No standardized methodology to account for normal use
System boundary for energy use in SE

1Transmission losses, air leakage, ventilation losses and such.
Methods

• Interviews with energy experts and energy and climate advisors

• Analysis of 44 single family houses from 2009 and onward with calculated and measured energy use

• Detailed study of 6 houses, data in building permit vs. EPC

• Analysis of 1753 EPCs from 2006 and onward in the metropolitan Gothenburg area — 1028 multi-family buildings and 725 single family houses

• Parametric study of the energy use in a single family house
Measured vs. calculated energy use

Average difference 25%. Largest difference 113%. Heated floor area measured wrong.
Large buildings have a lower difference in percentage than smaller buildings.
Detailed study of 6 houses

Energy use (kWh)

Differences for all buildings. Errors in both calculations and EPCs.
Large variation between the buildings, calculations and EPCs.

According to Sveby: 30 kWh/m²
Parametric study

- Single family house (built in 2012)
- Light-weight wooden construction
- Ground source heat pump
- Exhaust air to water heat exchanger
- Indoor temperature 20°C, 21°C and 22°C

<table>
<thead>
<tr>
<th>Number of persons</th>
<th>Household electricity</th>
<th>Hot water consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.3 W/m² = 5 100 kWh/year</td>
<td>145 l/pers/d = 53 m³/year/pers</td>
</tr>
<tr>
<td>2</td>
<td>1.6 W/m² + 0.52 W/m²/pers = 2 500 kWh/year + 800 kWh/year/pers</td>
<td>38.4 l/pers/d = 14 m³/year/pers</td>
</tr>
<tr>
<td>4</td>
<td>32.9 l/pers/d = 12 m³/year/pers</td>
<td>Low (green/right)</td>
</tr>
</tbody>
</table>
Results of 54 occupant profiles

Indoor temp.
Housh. elec.

DHW (m³/year)
Color

1 person
2 persons
4 persons

Energy use (kWh/m²)

20°C 21°C 22°C 20°C 21°C 22°C 20°C 21°C 22°C

W/m² W/m² W/m² W/m² W/m² W/m² W/m² W/m² W/m²

2.2 2.2 2.2 2.7 2.7 2.7 3.7 3.7 3.7

3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3

Normal use is not defined. Can be 36% difference for 1 vs. 4 pers.
Main conclusions

Measured EP in Sweden, normalized with respect to climate and behavior

- Energy use by *occupant’s behavior* explain a large part of the difference between calculated and measured energy use
- *Normal use* is not standardized and therefore not accounted for in the EPC
- Few buildings have energy meters that *separate energy use* for heating from energy use which should not be included in the EPC
- Bad compliance of the number of EPCs reported for new buildings is caused by *lack of follow-up actions*. There are no court cases of home owners lacking an EPC

! To improve the EPC scheme, and quality of energy use calculation, further work is needed in the area of *standardizing input data, calculation procedures* and *reporting*

The sole responsibility for the content of this presentation lies with the authors. It does not necessarily reflect the opinion of the European Union. Neither the EASME nor the European Commission are responsible for any use that may be made of the information contained therein.